Сайт об интересной и научно-технической информации
Четверг, 28.11.2024, 12:20
Меню сайта

Категории раздела
Новости наномира [203]
Новости материаловедения [90]
Влияние водорода на свойства сталей [9]
Водородная энергетика [28]
Новости образования [164]
Новости IT [580]
Сообщения о наиболее важных и интересных событиях [399]
Здоровье [247]
Разное [662]
новости науки и техники [588]
компьютерные игры [33]
программирование [6]
СЕКС SEX [73]
ВОДОРОД [34]
ПСИХОЛОГИЯ [61]
ЮМОР [6]
Это интересно [33]
Путешествия [20]
Сплавы [23]
Стали [0]
Кинокритика [3]
ТРИБОЛОГИЯ [3]
Разрушение материалов [0]
Чугуны [0]
Альтернативная энергетика [6]
Кинокритика [2]
Наука й техніка [1]
на український мові
Wissen [2]
Science and Development [42]
НОВОСТИ УКРАИНЫ [43]
МИРОВЫЕ НОВОСТИ [12]
АВТОМОБИЛЬНЫЕ НОВОСТИ [48]
МОДА [6]
СПОРТ, SPORT [28]
АРХИТЕКТУРА [1]
НЕВЕРОЯТНОЕ [0]
ИСТОРИЯ [1]
ИСТОРИИ ИЗ ЖИЗНИ [0]

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Форма входа

Поиск

Календарь

Архив записей

Реклама
  • Сайт Колесникова Валерия Александровича
  • Краснодонский факультет Инженерии и Менеджмента
  • FAQ по системе
  • Английский язык для всех
  • Форум по английскому языку

  • Главная » 2011 » Январь » 26 » Новая техника работы с молекулами ДНК для наноэлектроники
    06:04
    Новая техника работы с молекулами ДНК для наноэлектроники

    Новая техника работы с молекулами ДНК для наноэлектроники


    Группа ученых из Stanford University предложила легко воспроизводимую новую методику, основанную на поверхностной химии, позволяющую прикреплять молекулы ДНК к поверхности, а также новый способ растягивать эти молекулы до необходимой длины. Разработанная техника в будущем может быть полезна при создании масштабируемых наноэлектронных устройств на базе одной единственной органической молекулы.

    998_1.png Рис. 1. Структурная схема молекулы ДНК.

    Не так давно ученые обнаружили, что одиночные молекулы ДНК могут использоваться в качестве крепежа для соединения металлических контактов (электродов) и органических полупроводников в микроскопических электронных устройствах. Столь неожиданное открытие пророчит массу новых применений для молекул ДНК и органических материалов в принципе. Но для реализации первых устройств на практике требовалась разработка достаточно простой повторяемой методики, позволяющей фиксировать единичные молекулы ДНК на различных поверхностях, а также растягивать эти молекулы до необходимых длин.

    Новая методика, предложенная специалистами из Стенфордского Университета (Stanford University, США), подразумевает практическое использование синтетической структуры «ДНК – органическая молекулы – ДНК» для создания устройств типа «металлический электрод – органическая составляющая – металлический электрод» миниатюрных размеров за счет последующей металлизации ДНК структуры.

    Для фиксации отдельных ДНК молекул на поверхности устройств применялась методика на основе пары биотин-стрептавидина. В первую очередь к структуре поверхности добавлялась функциональная группа амина -NH2; в результате реакции амина с N-гидроксисукцинимидом (N-hydroxysuccinimide, NHS) появлялись цепи синтетического полимера полиэтилен гликоля (polyethylene glycol, PEG) с окончаниями из биотина. Далее для окончательного формирования связи с ДНК-молекулой применялся стрептавидин.

    Помимо этого, учеными была разработана методика контроля над длиной отдельных молекул ДНК на поверхности. Ими была предложена технология, позволяющая растягивать «контакты» из ДНК-молекул до необходимых длин.

    По мнению научной группы, их открытие представляет собой решающий шаг от простых исследований электронных свойств органических молекул к созданию на их основе крупномасштабных наноэлектронных компонент, своего рода связующее звено между отдельными давно известными компонентами. Кроме того, техника могла бы использоваться для изучения единичных молекул ДНК, а также особенностей их вращения. Способность закрепить единственную ДНК-цепочку на некой поверхности позволит заняться изучением ее реакции с определенными белками на микроуровне.

    Воодушевленная первыми столь успешными результатами, группа продолжает работу по развитию технологий металлизации молекул ДНК, закрепленных с двух концов. Более подробные результаты работы приведены в статье, опубликованной в журнале ACS Nano.

    Пожалуйста, оцените статью:
    Ваша оценка: None Средняя: 5 (1 vote)
    Источник(и):

    1. nanotechweb.org

    2. sci-lib.com

    http://www.nanonewsnet.ru/news/2011/novaya-tekhnika-raboty-s-molekulami-dnk-dlya-nanoelektroniki
    Категория: Новости наномира | Просмотров: 411 | Добавил: Professor | Рейтинг: 0.0/0
    Всего комментариев: 0
    Имя *:
    Email *:
    Код *:
    Copyright MyCorp © 2024
    Сделать бесплатный сайт с uCoz