Сайт об интересной и научно-технической информации
Воскресенье, 29.12.2024, 00:28
Меню сайта

Категории раздела
Новости наномира [203]
Новости материаловедения [90]
Влияние водорода на свойства сталей [9]
Водородная энергетика [28]
Новости образования [164]
Новости IT [580]
Сообщения о наиболее важных и интересных событиях [399]
Здоровье [247]
Разное [662]
новости науки и техники [588]
компьютерные игры [33]
программирование [6]
СЕКС SEX [73]
ВОДОРОД [34]
ПСИХОЛОГИЯ [61]
ЮМОР [6]
Это интересно [33]
Путешествия [20]
Сплавы [23]
Стали [0]
Кинокритика [3]
ТРИБОЛОГИЯ [3]
Разрушение материалов [0]
Чугуны [0]
Альтернативная энергетика [6]
Кинокритика [2]
Наука й техніка [1]
на український мові
Wissen [2]
Science and Development [42]
НОВОСТИ УКРАИНЫ [43]
МИРОВЫЕ НОВОСТИ [12]
АВТОМОБИЛЬНЫЕ НОВОСТИ [48]
МОДА [6]
СПОРТ, SPORT [28]
АРХИТЕКТУРА [1]
НЕВЕРОЯТНОЕ [0]
ИСТОРИЯ [1]
ИСТОРИИ ИЗ ЖИЗНИ [0]

Статистика

Онлайн всего: 15
Гостей: 15
Пользователей: 0

Форма входа

Поиск

Календарь

Архив записей

Реклама
  • Сайт Колесникова Валерия Александровича
  • Краснодонский факультет Инженерии и Менеджмента
  • FAQ по системе
  • Английский язык для всех
  • Форум по английскому языку

  • Главная » 2010 » Декабрь » 23 » На краю графена
    06:48
    На краю графена

    На краю графена

    Споры о перспективности графена в качестве потенциальной замены кремнию как основы будущей микроэлекторники продолжают будоражить лучшие умы научного мира. Так или иначе, но интерес к этому материалу не утихает, и с этим приходится мириться. В частности, представляет особый интерес определение граничной структуры графена, поскольку она во многом определяет его физические свойства.

    Использование EELS (спектра потери энергии электронов, иногда ХПЭЭ – спектроскопия Характеристических Потерь Энергии Электронами) спектроскопии для определения краевой структуры графена (и других материалов, содержащих легкие элементы) до настоящего времени считалось бесперспективным, поскольку интенсивность сигналов невелика, а сам исследуемый образец значительно повреждался электронным лучом.

    image-511.jpg Рис. 1. а) Фотография края графена, полученная с помощью темпнопольной микроскопии, и ее сглаженная версия (b), на которой отмечены рассматриваемые в работе атомы углерода в различном окружении (с). Масштаб 0.5 нм. d) ELNES-спектры углерода на K-полосе для атомов в различном координационном окружении (соответствие по цвету).

    В этом случае крайне перспективным видится использование метода ELNES (тонкой структуры спектра потери энергии электронов вблизи края поглощения). В зависимости от координационного окружения спектры ELNES изменяются (рис.1). В зависимости от позиции атома углерода изменяется интенсивность и ширина пиков D, S, σ* и π*. Кроме того, ученые, передвигая зонд электронного микроскопа поперек границы графена, сняли 100 спектров EELS с шагом 0.02 нм в течение 50 с (рис.2). Эти измерения подтверждают, что спектроскопия края графена с атомарным разрешением вполне реальна, даже несмотря на то, что сигналы в EELS спектрах нельзя полностью локализовать на отдельных атомах. Не менее интересно, что авторы статьи, вопреки распространенному мнению, не обнаружили следов атомов кислорода на краях графена, что, по всей видимости, связано с постоянным обновлением границы графена в ходе эксперимента. Таким образом, авторам статьи удалось расширить рамки применения метода ELNES. Если прежде исследователи могли лишь довольствоваться сравнением полученных спектров с эталонными, то теперь показана возможность безэталонного определения локальной структуры наноразмерного материала на примере краевой структуры графена.

    image-512.jpg Рис. 2. а) Фотография края графена, полученная методами темнопольной микроскопии, и его атомарная модель (b) с указанным направлением передвижения зонда. Масштаб 0.5 нм. c) Сигналы, полученные с помощью темнопольного микроскопа, по мере продвижения зонда от края графена (красный спектр). Восемь пиков соответствуют восьми атомам углерода, пересекаемым зондом (синий спектр – теоретический). d) ELNES-спектры, снятые на K-полосе, когда зонд находился на каждом из восьми атомов углерода. Для крайнего атома углерода (у которого лишь один соседний атом углерода) отчетливо заметен S-пик.

    Результаты исследований опубликованы в статье:

    Kazu Suenaga & Masanori Koshino Atom-by-atom spectroscopy at graphene edge. – Nature (2010) doi:10.1038/nature09664; Published online 15 December 2010.

    Пожалуйста, оцените статью:
    Ваша оценка: None Средняя: 5 (4 votes)
    Источник(и):

    1. nanometer.ru

    http://www.nanonewsnet.ru/news/2010/na-krayu-grafena
    Категория: Новости наномира | Просмотров: 370 | Добавил: Professor | Рейтинг: 0.0/0
    Всего комментариев: 0
    Имя *:
    Email *:
    Код *:
    Copyright MyCorp © 2024
    Сделать бесплатный сайт с uCoz