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Abstract: In the present study the software CrackComput , based on the Xfem and Xcrack libraries has been 
used for three problems- to experiment on the convergence properties of the method applied to elasto-statics 
crack problems, comparison of stress intensity factors to simplified analytical results and study of the Brazilian 
fracture test. All the problems are treated in two dimensions under plane strain assumption and the material is 
supposed elastic and isotropic. For the first example, comparison for different parameter-enrichment type and 
radius, degree of polynomial has been performed. Second example convergence of SIF with the L/h ratio has 
been performed and compared with the analytical solution. Third example is the study of snapback 
phenomenon. 

1. Introduction: The extended finite element method (XFEM), also known as generalized finite 
element method (GFEM) or partition of unity method (PUM) is a numerical technique that extends the 
classical finite element method (FEM) approach by extending the solution space for solutions to differential 
equations with discontinuous functions. The extended finite element method was developed to ease difficulties 
in solving problems with localized features that are not efficiently resolved by mesh refinement. One of the 
initial applications was the modeling of fractures in a material. In this original implementation, discontinuous 
basis functions are added to standard polynomial basis functions for nodes that belonged to elements that are 
intersected by a crack to provide a basis that included crack opening displacements. A key advantage of XFEM 
is that in such problems the finite element mesh does not need to be updated to track the crack path. Subsequent 
research has illustrated the more general use of the method for problems involving singularities, material 
interfaces, regular meshing of micro structural features such as voids, and other problems where a localized 
feature can be described by an appropriate set of basis functions. It was shown that for some problems, such an 
embedding of the problem's feature into the approximation space can significantly improve convergence rates 
and accuracy. Moreover, treating problems with discontinuities with eXtended Finite Element Methods 
suppresses the need to mesh and remesh the discontinuity surfaces, thus alleviating the computational costs and 
projection errors associated with conventional finite element methods, at the cost of restricting the 
discontinuities to mesh edges. The present study is the application of this concept for solving three real life 
problems.  

The outline of the report is as follows. In section 2 the problems of convergence analysis has been described. 
Section 3 deals with the crack in a beam and comparison of the numerically computed SIF with the analytical 
one. Section 4 is the study of the Brazilian test. The report is closed in section 5 with some concluding remarks. 



2. Convergence Analysis: 

 2.1 Problem Statement:  

         

 

 

 

 

 

 

 

 

2.2 Parameters selected for the Problem:  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1: Crack in an infinite 
plane, modeled using stress of 
the exact solution at the 
boundary 

Description:  The mode I and II crack opening for an infinite plate will be 
studied. To emulate the infinite problem, a square shaped domain will be 
used. On the boundary of the domain, the traction stress of the exact solution 
is imposed. The elastic numerical displacement field can then be computed 
numerically on the domain and a H1 norm of the error can be computed in a 
post processing phase.  

Objective: The objective of the study is to measure the error between the 
exact solutions and the numerical solution as well as the convergence rate for 
different simulation parameters. The improvement related to the use of the 
tip enrichment function and the size of the enrichment zone is to be studied 
and the error results are to be presented as curves as a function of element 
size in log log scale. 
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2.3 A Brief Theoretical Background: 

      2.3.1:  The concept polynomial in approximation theory:   In approximation methods like FEM, 
the unknown function id approximated as polynomial. When a polynomial is expressed as a sum or difference 
of terms (e.g., in standard or canonical form), the exponent of the term with the highest exponent is the degree 
of the polynomial. The approximation by of an unknown function by a polynomial will be more close to exact 
in case a higher order polynomial is used. As shown in the Fig 2.2, the approximation of a quadric polynomial 
with the piecewise linear function induces error apart from the nodal point. Numerical illustration will show that 
the selection of higher order polynomial gives less error.  

 

NOTE: Simulation performed on a sample size of 
10 mm by 1 mm. In each case the simulation is 
performed using number of elements: 10, 
20,30,40,50. 

	  

Crack	  



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

                                                                           

 

 

 

 

 

 

	  

Fig 2.2: A function in H1
0, with 

zero values at the endpoints (blue), 
and a piecewise linear 
approximation (red). 
 

	  

	  

Fig 2.3: Basis functions vk (blue) 
and a linear combination of 
them, which is piecewise linear 
(red). 

	  

Fig 2.4: Second order 
polynomial. The unknown 
function is approximated 
by quadratic polynomial. 

Fig 2.5: Higher order 
polynomial. The unknown 
function is approximated 
by cubic, quatric and 
higher polynomial.	  

	  
	  	  	  	  	  	  2.3.2: The Concept of Enrichment:  
   
               The traditional Finite Element Method (FEM) coupled with 
meshing tools does not yet manage to simulate efficiently the 
propagation of 3D cracks for geometries relevant to engineers in 
industry. In the XFEM approach, In order to represent the crack on its 
proper length, nodes whose support contains the crack tip (squared 
nodes shown in figure 2.6) are enriched with discontinuous functions 
up to the point t but not beyond. Such functions are provided by the 
asymptotic modes of displacement (elastic if calculation is elastic) at 
the crack tip. 

         	  	  	  	  	  	  	  	  
	  Fig 2.6: Crack not aligned with a mesh; the 
circled nodes are enriched with the 
discontinuous function and the squared	  
nodes  with the tip enrichment functions. 

The enriched Finite Element approximation is written as:

	  

Where,  

•  is the set of nodes in the mesh.                      
• is the scalar shape function associated to node i. 

• is the subset of nodes enriched by the Heaviside function. The corresponding (vectorial) DOF are 
denoted  

• are the set of nodes to enrich to model crack tips numbered 1 and 2, respectively. The 

corresponding degrees of freedom are  . 

• Functions  modeling the crack tip are given in elasticity by : 

 

          	  

    

 

•  is the classical (vectorial) degree of freedom at node i. 

	  

Topological and geometrical enrichment strategies: 

	  	  	  	   	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 Fig 2.8: Topological Enrichment 

 

 

	  

	  
Fig 2.7: Geometrical   Enrichment	  

	  

Topological enrichment consists in enriching a set of nodes 
around a tip. It does not involve the distance from the node 
to the tip. 

Geometrical enrichment consists in enriching all nodes 
located within a given distance to the crack tip.                                                                                       

 

 



 

 

 

	  	  	  	  	  	  	  
	  
	  
	  
	  
	  

 
 
 
 
 
 
 
 
 
 
 
2.3.4: Result and Discussions:  
     
      Table 2.1: Table for the error. 
  

	  	  	  	   	   	   	   Error 
Enrichment 
type 

Radius Degree Mode nelem=10 nelem=20 nelem=30 nelem=40 nelem=50 

Vector 0.1 1 1 0.244894 0.169134 0.125591 0.106975 0.089638 
Vector 0.1 2 1 0.10463 0.071143 0.0397 0.034069 0.025796 
Vector 0.3 1 1 0.196668 0.130976 0.097203 0.080513 0.068605 
Vector 0.3 2 1 0.068576 0.040318 0.027794 0.022942 0.019485 
Vector 0.5 1 1 0.17509 0.114009 0.085842 0.07061 0.060568 
Vector 0.5 2 1 0.057539 0.033955 0.025161 0.021125 0.018473 
Vector 1 1 1 0.145229 0.093322 0.071888 0.059798 0.051911 
Vector 1 2 1 0.047704 0.029847 0.023623 0.020215 0.017977 
Scalar 0.1 1 1 0.230946 0.151312 0.096895 0.081758 0.063587 
Scalar 0.1 2 1 0.093008 0.061212 0.029211 0.025099 0.019488 
Scalar 0.3 1 1 0.143692 0.086514 0.057819 0.045911 0.037359 
Scalar 0.3 2 1 0.050444 0.030693 0.022454 0.019104 0.016779 
Scalar 0.5 1 1 0.108513 0.062699 0.043323 0.033735 0.027722 
Scalar 0.5 2 1 0.043381 0.027519 0.021656 0.018793 0.016826 
Scalar 1 1 1 0.056658 0.032469 0.023866 0.019262 0.016373 
Scalar 1 2 1 0.038506 0.026522 0.021816 0.019019 0.017089 

 

Vector and Scalar Enrichment (Ref. to Fig 2.6): 

 

 

Vector Enrichment: 

 

	  

Scalar Enrichment: 

 

2.3.3 Analytical Solution: 

	  	  	  	  	   

	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  

	  	  	  

Fig 2.9: Normalized Stress Distribution for 
Mode 1. 

Fig 2.10: Normalized Displacement Distribution 
for Mode 1. 

	  

	   	  

 Fig 2.11: Crack tip circular region 

	  Solution for Stress Field: 

	  

 Solution for Displacement Field: 

 

	  

The numerically computed solution is to be 
compared with the analytical solution as given 
below and the H1 norm of the error is to be 
computed in a post processing phase. 



2.3.4.1: Comparison of error for different enrichment radius: 
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 Fig 2.11:Comparison of error for different scalar type of 
enrichment radius for polynomial degree 1 
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Fig 2.12: Comparison of error for different  vector type 
of enrichment radius for polynomial degree 1  
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Fig 2.13 :Comparison of error for different types of 
scalar type  of enrichment radius for polynomial degree 2 
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Fig 2.14: Comparison of error for different  types of  
vector enrichment radius for  polynomial degree 2 

Comment: 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.15: Geometric Enrichment 

Circled nodes are enriched with the 
Heaviside function while squared nodes are 
enriched by tip functions	  

All the nodes within the specified distance (indicated 
by blue arrow) from the crack tip are enriched. 

 In all four cases, the error due to the enrichment radius 1.0 is 
less .Because with larger enrichment radius, the number of 
nodes enriched in the neighborhood of crack tip is more. 
Hence the approximation function is drawn from the largest 
space. In general the error can be given by: 

However, in case of traditional 
FEM approach, with the halving of the mesh size, the error 
gets reduced by . In case of XFEM, with the 

conventional topological enrichment, the error gets reduced 
by ½. Hence with the use of more enrichment function, the 
reduction of error with the decrease of the mesh size is more. 
 

 The reduction of error with the decrease of mesh size is 
distinct in case of polynomial degree 1 as in this case the  
 

  



 

 

 

 

 

 

 

 

 

2.3.4.2: Comparison of error for different polynomial degree: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

unknown function is approximated with the linear function. Hence a priori there is error. Hence the use 
of more enrichment functions plays a dominant role in reducing the error of approximation. 
 

 In case of polynomial degree 2, the reduction of error with the decrease of mesh size is not distinct 
(especially at the smaller mesh size). Because the use of polynomial degree 2 plays the role of reducing 
the error. Hence use of higher enrichment radius is of no significant use. 
 

 In all cases, the difference of error at larger mesh size is distinct for different enrichment radius. As the 
error is proportional to the power of h (mesh size). Hence with the smaller mesh size the error due to 
mesh size is significantly reduced. Hence the reduction of error with the use of higher enrichment radius 
is not significant. 
 

 It is important to note that use of more enrichment function also increases the computation cost. Hence it 
requires optimizing the enrichment radius in order to avoid the high computation cost. 
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Fig 2.16: Enrichment Type: Scalar, Radius: 0.10 
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       Fig 2.17: Enrichment Type : Scalar, Radius: 0.30 

log (1/mesh size) 
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              Fig 2.18: Enrichment Type: Scalar, Radius: 0.50 
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    Fig 2.19: Enrichment Type: Scalar, Radius:1 
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        Fig 2.20: Enrichment Type: Vector, Radius: 0.10 
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         Fig 2.21: Enrichment Type: Vector, Radius: 0.30 
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      Fig 2.22: Enrichment Type:Vector, Radius: 0.50 
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      Fig 2.23: Enrichment Type : Vector, Radius: 1 



 

Comment: 
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Fig 2.24: Use of different degree polynomial in approximation theory. 

 In all the cases, the error is 
considerably less in case of 
polynomial degree 2. It is 
obvious as it can be seen 
from Fig 2.24 that use of 
higher order polynomial gives 
solution close to the exact 
even with small number of 
elements as compared to less 
degree polynomial. 
Ref to fig 2.24, quadratic 
element (polynomial of 
degree 2) can almost exactly 
represent an exact solution 
with just two elements. While 
the for linear polynomial i.e. 
polynomial of degree 1, it 
requires 8 elements. 
Hence, for a given number of 
elements, higher order 
polynomial gives better 
result.  
Ref. to Fig 2.25, it can be 
seen that in case of 
enrichment, higher order 
makes different. 

 

 It can be observed that for 
scalar type enrichment with 
enrichment radius 1, at the 
smaller mesh size, both 
polynomial degrees give 
close result. According to the 
limited knowledge of the 
author, reduction of the error 
mainly governed by scalar 
type enrichment which uses 
more number of integration 
points. This will be 
thoroughly discussed in the 
next section. 



 

 2. 3.4.3: Comparison of error for different types of enrichment (Scalar or Vector): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.25: In case of enrichment, higher order makes different. 
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      Fig 2.30 Polynomial Degree:2, Enrichment Radius:0.10 
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         Fig 2.31: Polynomial Degree 2 : Enrichment Radius: 0.30 
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        Fig 2.28: Polynomial  Degree:1, Enrichment  Radius: 0.50 
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              Fig 2.29: Polynomial Degree 1: Enrichment Radius:1 
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       Fig 2.32: Polynomial Degree:2, Enrichment Radius: 0.50 
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               Fig 2.33:Polynomial Degree 2; Enrichment Radius:1 
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         Fig 2.26: Polynomial Degree:1, Enrichment Radius:0.10 
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     Fig 2.27: Polynomial Degree:1, Enrichment Radius:0.30 

Comment: 

 For polynomial degree 1, the error in case of scalar enrichment is considerably less. In scalar 
enrichment, as mentioned earlier, four enrichment functions are used at each node in two directions. 
Hence total at each DOF, total 8 DOF are used. Hence more number of integration points is used in this 
case. In vector enrichment, only 2 DOF (asymptotic mode that needed) is retained and other terms are 
neglected depending on the 6 coefficients. By playing around with the 4 functions, it exactly represents 
the function. 

 

            Hence in case of vector enrichment, less number of integration points is used. Hence one of the possible  



 

 

 

 

 
2.3.4.4: Displacement and Stress Field: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reasons may that use of more number of gauss points for the numerical integration yields better result. 
 

 In case of polynomial degree 2, error due to scalar and vector enrichment does not differ significantly 
with the decrease in mesh size. As discussed earlier, higher order polynomial can approximate a function 
more accurately as compared to the lower order polynomial. Hence for higher order polynomial, the 
error is not significantly governed by the enrichment type. 

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  	  	  	  	   	  

Displacement Field: 

Displacement along the y –direction is given by: 

 

	  

The displacement field is discontinuous along the 
crack length.  

Stress Field: 

As mentioned earlier, the stress field is proportional 

to . Hence the stress field is singular at the tip of 

the crack. 

At the crack tip, theoretically the stress reaches the 
maximum value of infinity. 

	  

	  	  	  	   	  

Fig 2.34: Displacement Field. 

Fig 2.35: Stress Field 

Term causing discontinuity 



 

3. Crack in a beam: 

 

 

 

 

 

3.2 Selection of the Mesh Size:  

For a particular length, simulation is performed on different mesh size until the stress intensity factor (SIF) for 
the second mode ( ) converges to zero. The following parameter is selected for the analysis. 

Height (h): 1 

Length (L): 10 

Polynomial Degree: 2 

Point on the lip : 5 

Enrichment Radius :                                                0.4 

Enrichment Type: Scalar Enrichment 

Young modulus : 1 

poisson : 0 

 

 

 

 

 

 

 

 

Fig 3.1: Crack in a beam 

3.1 Problem Statement: 

Description: A crack in an enhanced beam must be modeled 
in two dimensions. The stress intensity factor is to be computed 
for different L/h ratio until convergence.  

Objective: Comparison and analysis of the analytical stress 
intensity factor (SIF) with the computed SIF at the crack tip. The 
analytical model is based on a strain energy analysis on two 
beams. 
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Crack	  Length	  (a)	  =5	  

Fig 3.1: Initial geometry for selection of the mesh size. 

	   

NOTE:  The number of 
element in the longer 
direction (say M) and in the 
vertical direction (say N) are 
selected in such a way so 
that L/M = h/N. 

L KII 

10 1.48E-06 

20 3.41E-07 

30 2.09E-07 

40 1.65E-07 
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Table: L v/s KII 
No of element selected 
for the analysis 

Fig 3.2: No. of element v/s KII plot. 

	  
3.3 Determination of KI:  

The length of the specimen is increased. The length of the crack is kept as half the length of the specimen. The 
number of element is increased in such a way so that the mesh size in the longer direction is kept constant for 
all the length.  

	  



 
 

	  	  	  	  	  	  	  	  	  	  	  	  L/h	   	  	  	  	  	  KI	  
10	   5.37E-‐03	  
20	   1.43E-‐03	  

30	   6.51E-‐04	  
40	   3.70E-‐04	  

50	   2.39E-‐04	  
60	   1.66E-‐04	  

70	   1.23E-‐04	  

80	   9.41E-‐05	  
90	   7.45E-‐05	  

100	   6.05E-‐05	  
110	   5.00E-‐05	  

120	   4.21E-‐05	  

130	   3.59E-‐05	  
140	   3.10E-‐05	  

150	   2.70E-‐05	  

 

3.3 Analytical Solution for KI: 

      In the present problem, we are considering the case of constant displacement.  In this section, analytical 
solution of KI will be developed for this case. 
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	  	  	  Fig 3.3: The KI  v/s   L/h profile 
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           Fig 3.4: Cracked body with energy changes 
Fig 3.5: Load v/s Displacement diagram for a growing 
crack 

Ref. to Fig 3.4: 

The input energy change 

Change in dissipated energy as heat. 

Total potential elastic energy 

Change in kinetic energy of the system. 

Consequently, the conservation of energy change 
due to the displacements arising from the fracture 
area change can be defined as: 

	  

Energy release rate  is given as: 

 



 

 

If the cracked plate shown in Figure 3.4 is subjected to an external load P and the crack growth very slow, then 
the load-points undergo a relative displacement perpendicular to the crack plane and the crack length 
extends an amount .Consequently, the work done responsible for such an increment in displacement and 
crack length is defined by : 

 

Consider mode I (tension) loading and the linear behavior shown in Figure 3.5. The stored energy due to tension 
loading can be defined as the area under the curve. 

 

Hence,   and . 

Consider the present problem under constant displacement. In this case, the load and load gradient expressions 
are 

, Hence we get:  

Since , we get: 	  

The SIF for Mode I loading is given by: 	  

For the present problem, , Substituting these values, we get:	  

, Numerical value of:  

 
 

 

 

 

 

 

 

 

 

 

 

	  

	  	  	  	  	  	  	   	   	  	  	  	  	  	   	  

Displacement and Stress Field: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Comment: 

• The analytical solution is developed for one dimensional beam problem. Hence the length of the beam is 
increased keeping the height constant until the L/h ratio is predominantly large i.e the geometry can be 
considered as one dimensional. However, the analytical solution is not exactly same as the numerical 
one as the numerical solution always associates different kinds of numerical error. However the order of 
magnitude is same. 

•  

 

 

  

Enrichment 
Recommended 

Enrichment  

Not Recommended The enrichment zone used should be well 
inside the geometry. As shown in the 
adjacent figure, enrichment zone exceeding 
the geometry of the beam is not 
recommended. 



 

 

4. Brazilian Test: 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

	  	  	  

	   	  

Fig 4.1: Schematic Diagram of the      
Setting of the Brazilian Test 

Fig 4.2:  The Setting of the Brazilian Test 

	  

Fig 4.3:  The Experimental Set Up of the 
Brazilian Test 

	  4.1 Problem Statement: 

 The Brazilian Test is a famous experiment on concrete sample, as represented on the figure. The goal of this 
exercise is to reproduce the experiment, where a crack appear in the center of the sample in the vertical direction 
and then propagate vertically until total failure of the sample. The displacement/force curve is to be plotted at 
the loading point while the crack propagates under the assumption that the crack propagate at constant value of 
KI stress intensity factor. 
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4.2 A Brief Background:  

The Brazilian test was developed to measure the tensile strength of 
brittle materials like rocks and concrete (Berenbaum and Brodie, 
1959). The Brazilian testing procedure is simple and the specimen 
preparation is easy compared to other test methods. Standard test 
method had been suggested (ISRM, 1978). The indirect tensile 
strength of a disc sample (Figure 1) of radius R and thickness t, with 
known load at failure P is given by 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	   	  
Fig 4.1: Brazilian test for indirect tensile 
strength 

	  

The stress field inside the disc can be obtained by solving a 
differential equation that employs Airy’s stress function and satisfies 
the boundary condition of the sample. 
 
Brazilian tests simulation of rock samples with pre-existing cracks is 
executed with the crack length and orientation taken as variables. 
Visible new cracks are generated right after the global peak in the load – 
displacement curve. It is seen that the macro tensile strength decreases as 
the pre-existing crack length increases. 
 
Numerous studies of Brazilian tests have concentrated on the numerical 

Enrichment Zone Inside 
the geometry 

Enrichment Zone 
Exceeding the 
Geometry  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2: Fracture initiation and propagation in a 
disc with a 40 mm long pre-existing inclined crack 
at the disc centre, oriented at  4.3:  Test Sample and the Boundary Condition: 
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Fig 4.4: Test Sample before failure 

Fig 4.5: Test Sample after failure 

	  

Fig 4.3: Sample for Brazilian 
Test 

O	  

A	   B	  

NOTE: 

The crack in the 3D sample is a penny 
shaped. The length of the crack is given by 
the diameter of the crack. Because of 
symmetry in loading and geometry, half of 
the sample is analyzed. The length of the 
crack is given by the radius. 

Boundary Condition: 

Until the crack propagation causing the 
failure of the sample, the BC is given by 
the Fig 4.4. The midpoint (O) motion is 
prevented in the X-direction and the 
motion of the other points is restricted in 
the Y-direction. 

After the failure of the sample i.e. the crack 
propagates through the sample, the BC 
condition is given by Fig 4.5. Point A and 
B are restricted in the X-direction. 

X	  

Y	  

4.4:  Methodology: 

The SIF is related to the force as: . The analysis is performed for a load of 1N. Hence, .  

Now the critical force can be obtained as: . The is taken as 1.  Hence  . 

Hence the obtained  value is inverted to get the critical force. The obtained displacement from the simulation 
is for a force of 1N. Hence the true displacement is obtained by multiplying the obtained displacement with the

. 

The sample with no crack will behave linearly (i.e. the Force v/s Displacement curve is linear). The sample will 
have higher modulus of elasticity. With the initiation of the crack, the sample will start losing the strength and 
will undergo snap back phenomenon. After the propagation of the crack through the body, the sample will still 
withstand load. But it will have the minimum strength.   

The simulation if performed for the crack length from 0.10 to 0.95. The radius of the sample is 1. Hence a crack 
length > 1 stands for the full propagation of the crack and the failure of the material.  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

 



 

 

4.5:  Results and Discussions: 

                 Table 4.1 : Table for Force and Displacement  

Crack 
Radius 

Displacement for  F=1 N KI Critical Force Actual     
Displacement 

0.1 5.31E-09 6.89E-02 1.45E+01 7.70E-08 
0.15 5.33E-09 8.56E-02 1.17E+01 6.22E-08 
0.2 5.35E-09 1.01E-01 9.89E+00 5.29E-08 

0.25 5.38E-09 1.16E-01 8.61E+00 4.63E-08 
0.3 5.42E-09 1.32E-01 7.60E+00 4.12E-08 

0.35 5.46E-09 1.47E-01 6.79E+00 3.71E-08 
0.4 5.52E-09 1.64E-01 6.11E+00 3.37E-08 

0.45 5.60E-09 1.81E-01 5.53E+00 3.10E-08 
0.5 5.69E-09 1.99E-01 5.03E+00 2.86E-08 

0.55 5.80E-09 2.18E-01 4.60E+00 2.67E-08 
0.6 5.94E-09 2.36E-01 4.23E+00 2.51E-08 

0.65 6.11E-09 2.55E-01 3.92E+00 2.39E-08 
0.7 6.31E-09 2.73E-01 3.67E+00 2.31E-08 

0.75 6.55E-09 2.85E-01 3.50E+00 2.30E-08 
0.8 6.83E-09 2.89E-01 3.46E+00 2.36E-08 

0.85 7.16E-09 2.75E-01 3.63E+00 2.60E-08 
0.9 7.51E-09 2.33E-01 4.30E+00 3.23E-08 

0.95 7.87E-09 1.43E-01 6.97E+00 5.49E-08 

  

    Force v/s Displacement Curve: 



 
Details of the Plotting of the Force- Displacement Curve (Ref. Fig 4.6): 

Curve DCE:   

The numerical simulation is performed for different length of the crack. The obtained value of KI is inverted to 
get the actual force which when multiplied with the obtained displacement gives the true displacement. The 
obtained actual force and displacement is plotted to get the curve DCE. 

Line OA:  

                               

 

 

 

 

Line OB:  
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Fig 4.6: Force v/s Displacement Curve 

	  

Displacement  
For F=1N in 
mm. 

Displacement 
for Applied 
Force (mm) 

True Applied 
Force (N) 

                 0 0 0.00E+00 

5.16E-09 1.03E-07 2.00E+01 

	  	  

Line OA corresponds to the case of NO CRACK. 
Simulation performed for force of 1 N. The displacement (in 
the Y direction) is multiplied by 2 for an applied force of 2 
N. The data in the last two columns of the table 4.2 are used 
to plot Line OA. 

Table 4.2: Table for the Line OA. 

	  Table 4.3: Table for the Line OB. 

Displacement  
For F=1N in 
mm. 

Displacement 
for Applied 
Force (mm) 

True Applied 
Force (N) 

                 0 0 0.00E+00 

8.08E-09 1.62E-07 2.00E+01 

	  

Line OB corresponds to the case of COMPLETE CRACK 
PROPAGATION. Simulation performed for force of 1 N. 
The displacement (in the Y direction) is multiplied by 2 for 
an applied force of 2 N. The data in the last two columns 
of the table 4.3 are used to plot Line OB. 

	  

 Significance of the Force- Displacement Curve: 
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F	  

Area OBG is measure of 
stored energy in the 
system after the failure 
of the sample and the 
load is at B 

Area OAF is 
measure of 
stored energy in 
the system for 
the case of NO 
CRACK.	  

Area OAH is measure of the loss of 
energy of the system when the load 
is reduced from A to H 

Slope of the line is a 
measure of Young 
Modulus of the system at 
this stage. 
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Jump 
Phenomenon 

Fig 4.8: Jump Phenomenon 

The force displacement curve is an example of Snap Back phenomenon. 
The are under the curve at a particular stage is a measure of the stored 
energy in the system. The difference of the area between the two stages 
gives a measure of the loss of energy of the system due to change in 
loading on the system. At a particular state, the slope of the line is a 
measure of the Young Modulus of the system. 

NOTE: In practice during experiment, it is difficult to capture the sudden change in the Force v/s displacement 
curve (the position of the global peak i.e. the Point of Bifurcation). The curve jumps suddenly from point A to 
point B . The phenomenon is known as Jump Phenomenon.  
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Displacement and Stress Plot: 

 Crack Length Displacement Plot Stress Plot 
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Comment: 

 Brazilian Test gives an idea of the strength of the concrete specimen and its behavior under the uniaxial 
loading. The force at which the crack initiation occurs can be captured from the load displacement 
diagram. 
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Fig : Displacement v/s Crack Length Plot  

Crack Length 

Failure of the 
Sample 

 The displacement at the tip of the crack keeps on 
increasing with the increase of the crack length. 
Since the loading and the sample geometry is 
symmetric, the displacement field is also 
symmetric. 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

 Like the displacement field, the stress field is also 
symmetric due to the symmetry in loading and 
geometry.  
The stress is maximum at the tip of the crack. The 
stress is also reaches high value just beneath the 
loading plate.  

Stress is maximum   at 
the crack tip 
(Theoretically 
Infinite) 

Stress is also high just 
below the loading 
plate. 

Fig: Stress Field at crack length 0.40 
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5. Conclusive Discussion: 
 The study of convergence analysis gave an idea of the set of parameter that yields proper convergence. 

However the set of parameter should be optimally selected so as to optimize the speed of computation 
also. 
 

 The convergence study can also be extended for the case of mixed mode, presence of hole, curved 
boundaries and other kinds of discontinuity which will simulate the real problems. The study can also be 
extended for other fields like stress, pressure, strain etc. 
 

 The study of crack in a beam gives an idea about the SIF value when the 2-D model is enlarged enough 
to have 1-D behavior. Hence the study can be extended for the evaluation of SIF for 2-D model, for the 
mixed mode and for other discontinuities. 
 

 The study of the Brazilian Test gives an idea of the Snap Back behavior of the sample under the 
specified loading condition. The Boundary Condition for the case of no crack and the failure of the 
sample should be properly chosen while analyzing the half of the sample. 
 

 The study can be extended for the mixed mode and other types of loading condition (e.g. random 
loading, dynamic loading). 
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