Evaluation of an open-source finite element
package, WARP3D

David F. Dolphin

B.Eng in Mechanical Engineering

March 2009

The University of Limerick Department of

Mechanical and Aeronautical Engineering

Evaluation of an open-source finite
element package, WARP3D

David Dolphin
ID: 0548693

david.dolphin@csn.ul.ie

B.Eng in Mechanical Engineering

Supervisor: Prof. Noel O’Dowd

Final Year Project report submitted to the University of Limerick,
March 2009

I declare that this is my work and that all contributions from other

persons have been appropriately identified and acknowledged.

mailto:david.dolphin@csn.ul.ie

Abstract

WARP3D is an Open Source Finite Element solver. This report compares the
basic commands involved in modeling a WARP3D problem to their ABAQUS coun-
terparts. Post-processing software was written in Matlab to visualise results ob-
tained from WARP3D.

Acknowledgements

I’d like to thank Noel O’Dowd and Hugh O’Brien, for their unwavering support.

Contents

1 Introduction
2 Literature Review
3 System Description

4 Comparison of File Formats
4.1 Breakdown of an ABAQUS inputfile
4.2 Breakdown of a WARP3D inputfile

5 Software Development

6 Software Evaluation
6.1 Usability. e
6.2 AcCuracy e e e

7 Results
8 Discussion
9 Conclusions and Further Work

A User Manual
A.1 How to run simple WARP3D problem (using Microsoft Windows) .
A.2 How to view WARP3D output using WarpViz
A.3 Print Results from WarpViz

B Source Code
B.1 warpvizm e e
B.2 processneutral filem L.
B.3 nodestofacesm,
B4 readdispm e

B.5 displacement_magnatuidem

10
10
11

12

17

18

B.6 read_StresS.m e e e e e e e e

B.7 read_strain.m

i

List of Figures

7.1 BarMesh-StepO
7.2 Bar Mesh - Displacements - Deformed Mesh - Step 150
7.3 Bar Mesh - Displacements - Interpolated contours - Step 150
7.4 Bar Mesh - Stesses - Interpolated contours - Step 150
7.5 Bar Mesh - Stesses - Interpolated contours - No Grid - Step 150
7.6 Bar Mesh - Stesses - Interpolated contours - Deformed mesh - Step
150 . . e
7.7 Bar Mesh - Stesses - Interpolated contours - Deformed mesh - Step
60 . .o e
7.8 Bar Mesh - Stesses - Interpolated contours - Deformed mesh - Step
100 . . o e

il

Chapter 1
Introduction

Finite Element Analysis is used increasingly in all fields of engineering to cut down
on development and prototyping time. It enables engineers to quickly compute
otherwise laborious and tedious Finite Element Equations.

WARP3D is an open source Finite Element solver. As it is open source, the
Fortran source code is readily available under the GNU Public License. This en-
ables programmers and engineers to modify the application in any way they deem
necessary. It is also free software; it is not necessary to purchase a License to use
the software.

WARP3D has been available since 1995 and currently supports many of the fea-
tures available in other solvers, including, but not limited to: mesh-tieing, fracture
growth analysis, parallel execution, and domain-integral computations.

The aim of this project is to investigate the foundation features of WARP3D
and compare them to the existing commercial package, Simulia ABAQUS. We also
intend on viewing the output from WARP3D in a meaningful way.

It is presumed that the audience of this report are familiar with the Finite El-
ement Method. As a result this report does not cover the math involved in Finite
Element Analysis.

It is presumed that the audience are familiar with Simulia ABAQUS, and can
model simple problems using the CAE package, submit a model for analysis, and
view results.

Finally, it is presumed that the audience are familiar with Mathworks Matlab,
can execute commands, and are familiar with basic graphing and file manipulation

functions.

Chapter 2
Literature Review

WARP3D is capable of outputting results in the MSC/PATRAN format (MSC Soft-
ware Corporation 2009) . As a result WARP3D output can be read into Patran.

The PATRAN format can be read by a variety of commercial post-processing
applications, including ABAQUS and ANSYS. However, in both cases a translator

license is required.

Chapter 3
System Description

The hardware used for this project were x86 compatible PC’s.

WARP3D release 15.9 was used. It requires Microsoft Windows (2000 or later),
Linux, SGI Linux, or HP-UX (11.x or later) (Com n.d.).

Matlab 6.5 (release 13) was used. It requires 128Mb of RAM (256Mb rec-
ommended) and Microsoft Windows (98 or later), OSX (10.1.4 or later), or Linux
(Kernel 2.2.1 or later). In order to perform the graphing functions in Matlab an
OpenGL compatible graphics card is required. Further details can be found on the
manufacturers’ website (Mathworks 2002) .

Simula ABAQUS version 6.6-2 was used. It requires 256Mb of RAM (512Mb
recommended) and a Microsoft Windows (2000 SP3 or later), Linux, HP-UX (11.22
or later), IRIX (6.6.8 or later), or AIX (5.2 or later). Further details can be found on
the manufacturers’ website (Dassault Systemes, Simulia Corp. 2006) .

ABAQUS consists of several sub-packages. Those within the scope of this
project include; ABAQUS/CAE, ABAQUS/Standard, ABAQUS/Explicit and ABA-
QUS/Viewer.

ABAQUS/CAE is a pre- and post-processer for results, it is used to sketch mod-
els, mesh them and then view results (stresses, strains, displacements, &c.).

ABAQUS/Standard is a general purpose solver used for solving linear and non-

linear problems.

Chapter 4

Comparison of File Formats

4.1 Breakdown of an ABAQUS input file

The following is an ABAQUS input file, using a square element with loading and
unloading in the X direction.

Description of the problem

*HEADING
Element type:CPS8 Mesh of 1 x 1 elements

Define nodes and assign them to the ALLNODES set.

*NODE, NSET=ALLNODES
1,0.000000E+00,0.000000E+00
2,0.500000E+00,0.000000E+00
3,0.100000E+01,0.000000E+00
4,0.000000E+00,0.500000E+00
5,0.100000E+01,0.500000E+00
6,0.000000E+00,0.100000E+01
7,0.500000E+00,0.100000E+01
8,0.100000E+01,0.100000E+01

Define node sets used for loading and constraints.

*NSET, NSET=ALLN , GENERATE

1, 8, 1
*NSET, NSET=XAXIS,GENERATE
1,3,1
*NSET, NSET=YAXIS
1,4,6
*NSET, NSET=NDISPX
3,5,8

Define element type, here 2D quad (8 node) element is used. Nodes are also

assigned to the elements.

*ELEMENT, TYPE=CPS8

1, 1, 3, 8, 6, 2, 5, 7, 4

Assign elements to element sets.

*ELSET, ELSET= ALLE
1

Define material properties and the element sets they apply to.

*SOLID SECTION, ELSET=ALLE, MATERIAL=CERAMIC
*MATERIAL, NAME=CERAMIC

*ELASTIC

400,0.3

Define symmetrical boundary conditions.

*BOUNDARY
XAXIS, 2
YAXIS, 1

Define displacement amplitude.

*AMPLITUDE, NAME=DISP , VALUE=RELATIVE, TIME=STEP
TIME
0.000, 0.000, 100.000, 0.100

Define loading. The four numbers represent initial time increment, total time,

minimum time increment and maximum time increment.

*STEP, INC= 10
*STATIC
1, 1, 0.0001, 1.00

Apply nodal displacements

*BOUNDARY, AMPLITUDE= DISP
NDISPX, 1, 1, 1.000

Generate results.

*NODE PRINT, FREQ= 0
*EL PRINT, FREQ= 1
S,E

*OUTPUT, FIELD, VARIABLE=PRESELECT, FREQ=1
*NODE OUTPUT

RF

*OUTPUT, HISTORY, VARIABLE=PRESELECT, FREQ=1
*ELEMENT OUTPUT, ELSET=ALLE

S,E

*RESTART, WRITE, FREQ= 1,OVERLAY

*END STEP

4.2 Breakdown of a WARP3D input file

Some differences exist between the ABAQUS and WARP3D input formats. Block-
ing is defined for multi-processor work and there are no node or element sets.

Define the name of the problem:

structure square

Define any materials used in the problem, giving their engineering properties.

material abl5_grade_70_steel
properties mises e 30000 nu 0.3 yld_pt 60.0 n_power 10.,
rho 1.0

Define the number of nodes and elements used in the problem.

number of nodes 8

number of elements 1

Define element types. In this example our element is an 8 node 3D isoparametric
element (13disop), as WARP3D does not support 2D elements with small strain
kinematic formulation (linear). The previously defined material is assigned using
standard 2x2x2 Gauss integration.

Here only one element has been defined, but it is possible to define multiple
elements, each with different properties.
elements

1 type 13disop nonlinear material a515_grade_70_steel,
order 2x2x2 short Dbbar

Coordinates are indexed and defined in an x-y-z manner.

coordinates
1 0

w J o s W N
O R B O O B K
R R O O B B O O
R R P P O O O O

The incidences reference how each node is placed in an element. WARP3D
expects to the defining elements of the cube in a predefined order, dependant on
element type.

incidences
1 5 1 4 8 6 2 3 7

Blocking maps elements to block domains. This is necessary for parallel execu-

tion, as each block may be executed on a different processor.

blocking
1 1 1

Define constraints and displacements of the problem, specifying the plane to

constrain and whether we are constraining (u=0) or displacing (u=1).

constraints
plane x=0 u=0
plane y=0 v=0
plane z=0 w=0

plane x=1 u=l

In this example forces are not applied, but displacements, yet WARP3D requires

a loading step, therefore the dummy force has no magnitude.

loading dummy
nodal loads

1 force_y 0.0

Specity our loading and unloading conditions.

loading bend
nonlinear
step 1-5 dummy 1
step 6-10 dummy O

Next specify our problem settings, including number of iterations, stabilisation

factors, time steps and convergence test tolerances.

nonlinear analysis parameters
solution technique direct sparse
maximum iterations 5

minimum iterations 1

maximum linear iterations 10
preconditioner type hughes-winget
convergence test norm res tol 0.05 maximum residual tol 0.5
time step 1.0el0

trace solution on lpcg_solution off
linear stiffness iteration one off
adaptive solution on

batch messages off

bbar stabilization factor 0.0

extrapolate on

Finally we specify our output formats. For post processing the important com-
mands are the output patran neutral and output patran formatted nodal displace-
ments stresses strains.

compute displacements for loading bend for step 1-10

output displacements nodes 1-8

output displacements eleme nts 1

output strains steps 1-10

output wide eformat noheader strains 1

output wide eformat noheader stresses 1

output patran neutral

output patran formatted nodal displacements stresses strains

stop

Chapter 5
Software Development

One of the goals of this project was to view results created by WARP3D. The appli-
cation WarpViz was created to view WARP3D output in Matlab.

The WARP3D and PATRAN mesh formats are similar to the Polygon file for-
mat (Bourke 2009) (PLY) also know as the Stanford Triangle Format (Stanford
Computer Graphics Laboratory 1994). The PLY format can be natively read by
MeshLab, i-sight (Sourceforge 2007) and Wolfram Mathemathica (Wolfram Math-
ematica Documentation Center 2009) and interfaces exist for a variety of platforms,
including Matlab. The Matlab PLY interface was used as reference when createing
the WarpViz application (Burkardt 2007) .

In order to view results we first need our WARP3D problem to output a Patran
neutral file. This is parsed with the process_neutral file function. An array of node
co-ordinates and element incidences are returned as two arrays.

Matlab plots 3D polygons so the cube elements must be redefined as a series of
faces. The patran element incidences are parsed into a series of polygon vertexes
using the nodes_to_faces function.

For displacements the WARP3D problem must output Patran ASCII formatted
nodal displacements, stresses and strains.

The Patran displacements file is parsed into 3 by x array of x-y-z displacement
values using the read_disp function. In order to visualise the displacements the
magnitude of the displacement vector is found with the displacement_magnatuide
function.

The read_strain and read _stress functions parse the Patran strain and stress files
respectively. They output 22 by x and 26 by x arrays respectively, using the nomen-
clature referenced in the WARP3D manual, Figure 2.10 (Com n.d.).

These functions are all called by the warp_viz function and fig file, which pro-

vide a graphical user interface for the text based functions.

Chapter 6

Software Evaluation

6.1 Usability

Usability research was conducted on existing Finite Element software. A critical
paper on Human Computer Interaction, and the Psychology of Computer interac-
tion was referenced throughout this project, Larry L. Constantine’s "What do users
want? Engineering Usability into Software”(Constantine 1995). This will enable
engineers to quickly adapt to WarpViz.

It was discovered that one of the key stumbling blocks in learning to use a piece
of engineering software was the lack of text feedback. Users were required to re-
member the functions associated with countless icons and buttons.

The Access rule states that ”Good systems are useable without help or instruc-
tion”. To address this text based labels were used, clearly defining what each func-
tion performed.

The Reuse principal states ”’[maintain] consistency with purpose rather than
merely arbitrary consistency”. To combat this, WarpViz uses the Matlab figure GUI
and maintains all functionality. Users already familiar with graphing in Matlab will
be able to simply rotate meshes, print or export results, change views and modify
titles.

The Simplicity principal states "Make simple, common tasks simple to do”.
Within the WarpViz dropdown menu users can easily access common functions to
toggle various visualisation options, including mesh visibility, deformation display
and contour shading options.

According to Card, S.K., "Users tend to break a large task into a series of unit
tasks within which behaviour is highly integrated”(Card, Moran & Newell 1983).
WarpViz addresses this by breaking the task of viewing results into a series of op-
tional steps. For example, if users do not need to view stress information then stress

files do not need to be loaded.

10

6.2 Accuracy

WarpViz output was compared to ABAQUS/Viewer output for similar problems and
result were conclusive, stress peaks where shown to occur in the same regions and

deformed meshed were identical.

11

Chapter 7

Results

The following results were taken from WARP3D sample problem 42, an Elastic-
Plastic steel bar undergoing rolling.

The input file describes the problem as ”’[...] simulates rolling of a 2x2x10 inch
bar of steel using a contact cylinder. The cylinder initially pushes into the bar a half
an inch, then moves across the bar, flattening it. Large residual stresses are left in

the bar after rolling is complete.”

Y Axis

Figure 7.1: Bar Mesh - Step 0

12

Displacement

Figure 7.2: Bar Mesh - Displacements - Deformed Mesh - Step 150

Displacement

SiXy Z

Figure 7.3: Bar Mesh - Displacements - Interpolated contours - Step 150

13

Stress

Figure 7.4: Bar Mesh - Stesses - Interpolated contours - Step 150

Stress

Y Axis

Figure 7.5: Bar Mesh - Stesses - Interpolated contours - No Grid - Step 150

14

Stress

Y Axis

Figure 7.6: Bar Mesh - Stesses - Interpolated contours - Deformed mesh - Step 150

Stress

Y Axis

Figure 7.7: Bar Mesh - Stesses - Interpolated contours - Deformed mesh - Step 60

15

Stress

Y Axis

Figure 7.8: Bar Mesh - Stesses - Interpolated contours - Deformed mesh - Step 100

16

Chapter 8
Discussion

We compared the basic structure of an input file for both ABAQUS and WARP3D.
As only ABAQUS has a complete GUI we can only fairly compare their text input
methods and results.

The output of WarpViz covers the basic features found in other FEA result vi-
sualisation packages. It enables users to pan, zoom, rotate, toggle views, plot con-
tours, edit labels and titles, insert annotations, export to a variety of formats, and
print results.

Should free pre-processing tools be developed for WARP3D then an entirely
free FEA package would be achievable. This would enable those who are unable to
pay for high licenses fees (students, small firms, freelance engineers, &c.) to obtain
high quality FEA results.

17

Chapter 9
Conclusions and Further Work

In some problems visual corruption occurs, elements which should be hidden at the
back of the mesh are brought to the front. This has been identified as an issue with
the Matlab painters renderer (Solutions 2007).

Matlab uses three methods of graph rendering, painters, opengl and zbuffer. The
renderer used in WarpViz is painters, due to its ability to output vector images used
in printed output. OpenGL and Z-Buffer rendering were tested but both produce
low quality pixel images.

It may be possible to solve this visual corruption if WarpViz takes the camera
view angle into account when rendering, and only renders faces which are visible
(WarpViz currently renders all faces and corruption occurs due to face placement in
the z-plane).

It is noted that even when corrupted images are displayed on a vector output
(.pdf) or on the screen, images are correctly exported to pixel formats (.png). While
pixel formats are not ideal for print this may be an acceptable compromise.

The deformation scale factor can be modified in the source, adjusting the vari-
able handles.scale. A GUI slider could be developed to improve usability here.

WarpViz only takes into account 13disop WARP3D elements. Additional patch/-
surf/trisurf commands and new parser libraries will need to be developed to view
meshes with other element types.

The read_strain, read_stress and read_disp functions are written for ASCII for-
matted files, not binary formatted files. Further libraries could be written to produce
the same output used by read_strain, read_stress and read_disp.

While the read_strain function will parse a Patran Strain step file, it has not
been interfaced with a graphing function. A Young’s Modulus function could be
developed, mapping stress against strain.

WarpViz only processes one set of Stain and Displacement step functions at
a time. It may be possible to view animations if multiple steps were rendered in

sequence.

18

WarpViz is not compatible with Octave, the third party open source clone of
Matlab. If WarpViz was modified to be compatible then a fully open source Finite
Element processing and visualisation environment would be available. Currently
the setup relies upon Matlab, which is closed source.

WarpViz is only a postprocessor of results and requires manual input file cre-
ation, or output from another application. A simple GUI based modeller and mesh-
ing application which created WARP3D input files would greatly increase the us-
ability of WARP3D.

Patwarp (included in the WARP3D source directory) can be used to convert from
a patran input to a WARP3D input and should be referred to if future pre-processor
work is to be completed in this area.

19

Appendix A

User Manual

Al

How to run simple WARP3D problem (using Mi-

crosoft Windows)

Download the WARP3D compressed archive (.zip) from http://cee-ux49.
cee.uiuc.edu/cfm/warp3d.html. Filename warp3d_distribute_###.zip

where ### represents the release number.

Extract archive to a suitable location (C : \warp3d).

Open the command prompt, click Start — Run — cmd

Change current working directory to the location of the extracted files (cd c:\warp3d).
Change directory to the run_windows directory.

Type warp3d. WARP3D runs in interactive mode, accepting typed com-

mands and printing results to the terminal.

To pass a pre-created input file to warp3d for processing use the | opera-
tor (warp3d < ..\example_problems_seriall\test_1). There-

sults are printed to the terminal.

To save results to a file for later analysis use the ; operator (warp3d < ..\example_prc

This .txt file can be viewed with notepad.

Note: Patran and packet files are saved in the folder which the WARP3D com-

mand is executed from, which may not be the folder output is saved to.

http://cee-ux49.cee.uiuc.edu/cfm/warp3d.html
http://cee-ux49.cee.uiuc.edu/cfm/warp3d.html

A.2 How to view WARP3D output using WarpViz

Note: The WARP3D problem executed must provide Patran formatted output. Ex-
ample problem 14 outputs both a neutral file, and the ASCII formatted displace-

ments and stresses.

e Copy the WarpViz.zip file from the CD which accompanies this report, or
download it from http://www.skynet.ie/~tyrion/fyp/

e Extract it to a suitable location (C: \WarpViz).

e Open Matlab and set the current working directory to the WarpViz directory.
This can be done using the location bar in the toolbar, or by typing the com-

mand cd c:\warpviz\ .
e Type warp_viz to execute the WarpViz GUIL

e Click FEA View — Open Patran Neutral File. Navigate to the location of your
saved .neutral file (it is located in the folder WARP3D was executed from).
In this example the file is called box_gird.neutral .

e To view displacements click FEA View — Open Patran Disp. Step file. Navi-
gate to the location of your saved step files. In this example the file is called
wnfd00020 (warp3d nodes formatted displacements, step 00020. Section
2.12.3 of the WARP3D Manual(Com n.d.) deals with the naming of step
files).

e To view stresses click FEA View — Open Patran Stress Step file. Navigate
to the location of your saved step files. In this example the file is called
wnfs00020.

e Using the remaining FEA View menu options it is possible to toggle defor-

mation, the mesh and smooth contours.

http://www.skynet.ie/~tyrion/fyp/

A.3 Print Results from WarpViz

e While viewing a model click File — Print preview. The default graph place-

ment is sub-optimal and should be adjusted.
e Click Page setup.

e To rotate the page click Paper — Landscape. Paper sizes can be changed here

too.

e Return to the Size and Position tab and click, in sequence, Fill Page, Fix

aspect ratio, Center.
e Click OK, then Print.
e Select printer/Operating System specific options.
e Click Print.
e Export WarpViz results as an image
e While viewing a model Click File Export.

e Navigate to the directory you wish to save the file in. The default directory is

the Matlab working directory, in this case the WarpViz directory.
e From the Save as type drop down choose the desired format.

e Enter a filename and click Save.

Note: JPEG is a lossy pixel based format. When printing, choose a lossless

(.png) or vector (.ai or .eps) format.

Note 2: When Exporting Matlab uses the Print options (Landscape/portraight) and
constrains the X pixel dimension to 1166 pixels. To obtain higher quality exported
images set the paper orientation to Landscape and rotate the outputted image in an

image manipulation package (mspaint).

16
17
18
19
20
21
22

23
24
25

26
27
28

Appendix B

Source Code

B.1 warp viz.m

function varargout = warp._viz(varargin)

gui_Singleton = 1;

gui_State = struct(’ gui_Name’, mfilename ,
>gui_Singleton’, gui_Singleton,
>gui_OpeningFcn’, @warp_viz_OpeningFcn,
>gui_OutputFen’, @warp_viz_OutputFcn,
>gui_LayoutFen’, [] ,
>gui_Callback’, (1)

if nargin & isstr(varargin{1})

gui_State . gui_Callback = str2func(varargin{1});

end

if nargout

[varargout {1:nargout}] gui_mainfcn (gui_State , varargin{:})...

)

else

gui_mainfcn (gui_State , varargin{:});

end

% —— Executes just before warp_viz is made visible.

function warp_viz_OpeningFcn(hObject, eventdata, handles,

%
%
%

%
%

varargin)
This function has no output args, see QOutputFcn.
hObject handle to figure

eventdata reserved — to be defined in a future version of ...
MATLAB

handles structure with handles and user data (see GUIDATA)
varargin command line arguments to warp_-viz (see VARARGIN)

29 % Choose default command line output for warp_viz

30 handles.output = hObject;

31

32 % Update handles structure

33 guidata(hObject, handles);

34

35 % UIWAIT makes warp_viz wait for user response (see UIRESUME)
36 % uiwait(handles. figurel);

37

38

39 % —— QOutputs from this function are returned to the command ...
line.

40 function varargout = warp_viz_OutputFcn(hObject, eventdata,
handles)

41

42 % Get default command line output from handles structure
43 varargout{l} = handles.output;

44
45 %
46 function warpMenu_Callback (hObject, eventdata, handles)

47

48 % ——

49 function open_neutral_Callback (hObject, eventdata , handles)
50

51 [input_file ,pathname] = uigetfile (

52 {>*.neutral’, ’Patran.Neutral _File_(x.neutral)’;

53 “s.% 7, "All_Files.(%.%) "}, ’Pick.a_File’);

54

55 if pathname ==

56 return

57 end

58

59 [handles.orig_elements nodes] = process_neutral_file(strcat(...

pathname , input_file));

60 handles.faces = nodes_to_faces (nodes);
61
62 handles.elements = handles.orig_elements; % This is to ...

preserver the loaded information

63 handles.disp = 0; % View displacements

64 handles.disp_mag = 0; % Display a contour

65 handles.scale = 0.5; % Scale/factor of ...
deformation

66 handles.bar = 0; % Show a color bar

67 handles. title_text = °’; % Title of the graph

68 handles.edge = 'k’; % Show edges / Mesh....

Default color can be changed here too

69 handles.face_smooth = ’flat’; % Smooth color ...

transitions in countour or pixel edges

70 handles.face_smooth_tog = 0; % Smooth color ...
transitions in countour or pixel edges

71

72 plotData(handles);

73

74 guidata (hObject, handles);

75

76 % ——

77 function open_disp_Callback (hObject, eventdata, handles)
78
79 [input_file ,pathname] = uigetfile (

80 {’x.%”, >All_Files_(x.%x) "}, ’Pick.a_File’);
81

82 if pathname == 0

83 return

84 end

85

86 handles.pre_disp (:,:) = read_disp(strcat(pathname,input_file));
% Element Displacements
87 handles.disp.mag = displacement_magnatuide (handles.pre_disp); % ...

magnituide of displacement vector

88

89 handles.elements = handles.orig_elements .x ((handles.pre_disp x...
handles.scale)+1); % Map Displacement

90

91 handles.title_text = ’Displacement’;

92 handles.disp = 1;

93 handles.bar = 1;

94

95 plotData(handles);

96

97 guidata (hObject, handles);
98
99 %
100 function open_stress_Callback (hObject, eventdata, handles)
101

102 [input_file ,pathname] = uigetfile (

103 {’x.%”, "All_Files_(x.%x) "}, ’Pick.a_File’);
104

105 if pathname ==

106 return

107 end

108

109 stress = read_stress(strcat(pathname,input_file));
110

111
112
113
114
115
116
117
118
119
120
121

122 %

123
124
125
126
127
128
129
130
131
132

133 %

134
135
136
137
138
139
140
141
142
143
144
145
146
147

handle . stress_von_mises = stress (:,8);

handles .disp-mag = handle.stress_von_mises;

handles. title_text = ’Stress’;
handles . disp = 0;

handles.bar = 1;

plotData (handles);

guidata (hObject, handles);

function toggle_mesh_Callback (hObject,

if handles.edge == 'k’
handles.edge = ’none’;
else
handles.edge = ’k’;
end
plotData (handles);
guidata (hObject, handles);

function toggle_smooth_Callback (hObject,

handles . face_smooth

if handles.face_smooth_tog == 0
handles . face_smooth = ’interp’;
handles.face_smooth_tog = 1;

else
handles . face_smooth = ’flat’;
handles . face_smooth_tog = 0;

end

plotData (handles);

guidata (hObject, handles);

148 % ———

149
150
151
152

153
154
155
156

function toggle_deform_Callback (hObject,

if handles.disp == 0

eventdata , handles)

handles.elements = handles.orig_elements .x

pre_disp * handles.scale)+1);
handles.disp = 1;
else

handles.elements = handles.orig_elements;

handles.disp = 0;

eventdata , handles)

eventdata , handles)

((handles....

157

end

158 plotData (handles);

159 guidata (hObject, handles);

160

161 % ———— GRAPH PLOTTING FUNCTION

162 function plotData(handles)

163

164 cla(handles.axesl);

165 axes(handles.axesl);

166

167 patch(’ Vertices’ ,handles.elements,’Faces’,handles.faces, ’
FaceColor’, handles.face_smooth, ’FaceVertexCData’, handles....
disp.mag, ’EdgeColor’, handles.edge);

168 axis image;

169 view (135,30);

170

171 xlabel (’X_Axis’, ’FontWeight’, ’Bold’);

172 ylabel (’Y_Axis’, ’FontWeight’, *Bold’);

173 zlabel (’Z_Axis’, ’FontWeight’, *Bold’);

174

175 title (handles. title_text , ’FontWeight’, ’Bold’, ’FontSize’, 14);

176

177 if handles.bar "= 0

178 colormap (jet (100));

179 col = colorbar;

180 end;

O 0 9 N L B WD~

10

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

B.2 process_neutral _file.m

function [elements ,nodes] = process_neutral_file(neutfile)
% Processes a Partan neutral file and asignes the

% elements and nodes to two seperate arrays
fid=fopen(neutfile);

tline = fgetl(fid);

tline = fgetl(fid);

element_no = str2num(fgetl (fid));

tline = fgetl(fid);

% element_no holds the header line which specifies the number of

% elements and nodes. These numbers are used next in the loops

for i=1l:element_no(5),

tline = fgetl(fid);
a(:,1) = fscanf(fid, "%f’); % Scan for floats
tline = fgetl (fid);
end
for j=1:element_no(6),
tline = fgetl(fid);
tline = fgetl (fid);
nodes(j ,:) = str2num(fgetl(fid)); % Convert the string to an...
array
end
fclose (fid);
elements = transpose(a);
elements (:,4) = [];

B.3 nodes to faces.m

1 function [faces] = nodes_to_faces (nodes)

2 % Convert an array of patran nodes into an array of Matlab patch...

faces
3
4 old_rows = size(nodes);
5
6 for i=1:o0ld_rows(1,1),
7 j = (i — 1) % 6;
8
9 faces(l + j,1) = nodes(i,l);
10 faces(3 + j,1) = nodes(i,l);
11 faces(5 + j,1) = nodes(i,l);
12
13 faces(l + j,2) = nodes(i,2);
14 faces(3 + j,2) = nodes(i,2);
15 faces(6 + j,1) = nodes(i,2);
16
17 faces(l + j,3) = nodes(i,3);
18 faces(4 + j,1) = nodes(i,3);
19 faces(6 + j,2) = nodes(i,3);
20
21 faces(l + j,4) = nodes(i,4);
22 faces(4 + j,2) = nodes(i,4);
23 faces(5 + j,2) = nodes(i,4);
24
25 faces(2 + j,1) = nodes(i,5);
26 faces(3 + j,4) = nodes(i,5);
27 faces(5 + j,4) = nodes(i,5);
28
29 faces(2 + j,2) = nodes(i,6);
30 faces(3 + j,3) = nodes(i,06);
31 faces(6 + j,4) = nodes(i,6);
32
33 faces(2 + j,3) = nodes(i,7);
34 faces(4 + j.,4) = nodes(i,7);
35 faces(6 + j,3) = nodes(i,7);
36
37 faces(2 + j,4) = nodes(i,8);
38 faces(4 + j,3) = nodes(i,8);
39 faces(5 + j,3) = nodes(i,8);
40 end

B.4 read disp.m

—

function [el] = read_disp(patran_disp_file)

2 % Reads and parses the Partan strain file into a 3 by x array of...
displacements

3

4 [element el (:,1) el(:,2) el(:,3)] = textread(patran_disp_file , °’

9%d Yot Yot %f’ , *headerlines’, 4);

B.5 displacement magnatuide.m

function [disp-mag] = displacement_magnatuide (disp)
% Calculate the magnatude of the XYZ displacement vector

disp_size = size(disp);
for i=1:disp_size(1,1),

disp-mag (i) = sqrt(disp(i,1)"2 + disp(i,2)"2 + disp(i,3)"2);
end

10 disp-mag = transpose (disp_mag);

B.6 read stress.m

—

function [el] = read_stress(patran_stress_file)

\S]

% Reads and parses the Partan stress file into a 26 by x array ...

of stresses

4 [element el(:,1) el(:,2) el(:,3) el(:,4) el(:,5) el(:,6) el(:,7)...

el (:,8) el(:,9) el(:,10) el(:,11) el(:,12) el(:,13) el(:,14)...

el (:,15) el(:,16) el(:,17) el(:,18) el(:,19) el(:,20) el...
(:,21) el(:,22) el(:,23) el(:,24) el(:,25) el(:,26)] = ...
textread (patran_stress_file , “%d_%f _%f _%f %f J%f %t J%f %t %t %...
f %t %t Jof _Ff _Jof Tt Jof _Fof Tt Yt Jof %t _Fof _Ff Jof %t , ...
headerlines’, 4, ’whitespace’, “_\b\n\r\t’);

B.7 read_strain.m

1 function [el] = read_strain(patran_strain_file)

2 % Reads and parses the Partan strain file into a 22 by x array ...
of strains

3

4 [element el(:,1) el(:,2) el(:,3) el(:,4) el(:,5) el(:,6) el(:,7)...

el (:,8) el(:,9) el(:,10) el(:,11) el(:,12) el(:,13) el(:,14)...

el (:,15) el(:,16) el(:,17) el(:,18) el(:,19) el(:,20) el...
(:,21) el(:,22)] = textread(patran_strain_file , ’*%d_%f _%f _%f....

K

Yot _Jot _Tot _Tof _Tof _Tof Yot _Jof _Jof _Tof Tt Tt Tt _Jof Tt Tt Tt Tt Tt , ...

headerlines’, 4, ’whitespace’, “_\b\n\r\t’);

References

Bourke, P. (2009), ‘Ply - polygon file format’, http://local.wasp.uwa.
edu.au/~pbourke/dataformats/ply/. [Online, accessed 2009-01-
18].

Burkardt, J. (2007), ‘Ply-io’, http://people.sc.fsu.edu/~burkardt/
m_src/ply_io/ply_io.html. [Online, accessed 2009-02-06].

Card, S., Moran, T. & Newell, A. (1983), The psychology of human-computer in-

teraction, Lawrence Erlbaum Associates.

Com (n.d.), WARP3D User-Theory Manual, 15.9 edn. http://cernd9.cee.
uiuc.edu/cfm/documents/WARP3D_v15.9_manual.pdf.

Constantine, L. (1995), ‘What do users want? Engineering usability into software’,
Windows Tech Journal 4(12), 30-39.

Dassault Systemes, Simulia Corp. (2006), ‘System requirements and tested con-
figurations for ABAQUS version 6.6 & 6.6-ef products’, http://www.
abagus.com/support/v66/v66_sysRgmts.html. [Online, ac-

cessed |.

Mathworks (2002), ‘Matlab support - system requirements - current release
13 - Windows’, http://www.mathworks.com/support/sysreq/
releasel3/index.html. [Online, accessed 2009-03-17].

MSC Software Corporation (2009), ‘Patran’, http://www.mscsoftware.
com/products/patran.cfm. [Online, accessed 2009-01-17].

Solutions, M. T. (2007), ‘1-1b33h - why does the painter’s renderer in mat-
lab display 3-d graphics incorrectly?’, http://www.mathworks.
com/support/solutions/data/1-1B33H.html?solution=
1-1B33H. [Online, accessed 2009-03-10].

Sourceforge (2007), ‘i-sight : Mesh visualization and scientific plotting tool’,
http://i-sight.sourceforge.net/. [Online, accessed 2009-02-
05].

http://local.wasp.uwa.edu.au/~pbourke/dataformats/ply/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/ply/
http://people.sc.fsu.edu/~burkardt/m_src/ply_io/ply_io.html
http://people.sc.fsu.edu/~burkardt/m_src/ply_io/ply_io.html
http://cern49.cee.uiuc.edu/cfm/documents/WARP3D_v15.9_manual.pdf
http://cern49.cee.uiuc.edu/cfm/documents/WARP3D_v15.9_manual.pdf
http://www.abaqus.com/support/v66/v66_sysRqmts.html
http://www.abaqus.com/support/v66/v66_sysRqmts.html
http://www.mathworks.com/support/sysreq/release13/index.html
http://www.mathworks.com/support/sysreq/release13/index.html
http://www.mscsoftware.com/products/patran.cfm
http://www.mscsoftware.com/products/patran.cfm
http://www.mathworks.com/support/solutions/data/1-1B33H.html?solution=1-1B33H
http://www.mathworks.com/support/solutions/data/1-1B33H.html?solution=1-1B33H
http://www.mathworks.com/support/solutions/data/1-1B33H.html?solution=1-1B33H
http://i-sight.sourceforge.net/

Stanford Computer Graphics Laboratory (1994), ‘The stanford 3d scan-
ning repository’, http://www-graphics.stanford.edu/data/
3Dscanrep/#file_format. [Online, accessed 2009-01-18].

Wolfram Mathematica Documentation Center (2009), ‘Ply (.ply)’, http:
//reference.wolfram.com/mathematica/ref/format/PLY.
html. [Online, accessed 2009-01-18].

http://www-graphics.stanford.edu/data/3Dscanrep/#file_format
http://www-graphics.stanford.edu/data/3Dscanrep/#file_format
http://reference.wolfram.com/mathematica/ref/format/PLY.html
http://reference.wolfram.com/mathematica/ref/format/PLY.html
http://reference.wolfram.com/mathematica/ref/format/PLY.html

	Introduction
	Literature Review
	System Description
	Comparison of File Formats
	Breakdown of an ABAQUS input file
	Breakdown of a WARP3D input file

	Software Development
	Software Evaluation
	Usability
	Accuracy

	Results
	Discussion
	Conclusions and Further Work
	User Manual
	How to run simple WARP3D problem (using Microsoft Windows)
	How to view WARP3D output using WarpViz
	Print Results from WarpViz

	Source Code
	warp_viz.m
	process_neutral_file.m
	nodes_to_faces.m
	read_disp.m
	displacement_magnatuide.m
	read_stress.m
	read_strain.m

